
  
Abstract—This contribution deals with the p-median problem 

and with the properties of the distribution network.We study the 
dependence of the computational time of exact method for p-median 
problem on characteristics of underlying transportation network. The 
research is motivated by previous experiences in experimental work 
with approximate method for the p-median problem. Networks 
obtained from the internet were used in mentioned experiment. The 
networkswere notgiven by their graphical structure, but by the cost 
matrix. During these experiments it was found that the distribution of 
the distance values may considerable influence the effectiveness of 
the solving process, which is based on the branch and bound method. 
We want to verify the similar hypothesis for the specific algorithm 
developed for the p-median problem. We also solve a problem of the 
network deformation. We check up changing of the computational 
time of the p-median problem after rounding the values of the cost 
matrix. We found out what differences are between the solutions 
before and after deformation of the network. We are interested in the 
impact of the deformation on the computational time, on the 
availability of the service, on the objective values and on the 
changing of the service centers locations as well.  
 

Keywords—cost matrix, distance matrix, frequency, network, p-
median problem. 

I. INTRODUCTION 
ANY services (health, education, public administration, 
etc.) are provided through a so-called public service 

systems. The ground of the public service system design is, 
inter alia, a decision on the service centers locations [2], [6], 
[12], [21]. Customers go to the service centers for the same 
services and theirs requirements are subsequently satisfied 
from these locations.Municipal offices, courts, hospitals and 
schools belong to these services.  

Some services are provided directly at customers.For 
example, emergency medical services, fire brigades, removal 
of the crashes or evacuation of the population belong to these 
services [7], [11], [19]. A lot of constrains influence the 
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decision about location of the service center to the certain 
point.Standard demand is the economicpoint of view. It is 
necessary to minimize the total costs of the accessibility of the 
service. These include the costs for building and operating the 
centers and the variable costs as well. The variable costs are 
usually given by the kilometric availability or by the time 
availability.It also depends on how often the customer service 
is used by a customer.  

At present, a simple location problem is solvable for 
thousands of nodes.In real life, there often occur problems, 
which need toobserveseveral constraints during their solution. 
One of them is, for example,the capacity limitation 
(production capacity, permeability of the distribution channel).  

When the storages of the dangerous material are located, the 
greatest distances from the populated area are required. On the 
contrary, a providing of the emergency services and other 
rescue centers need minimization of the distance between the 
costumer and the located center.This requirement may be even 
stronger.We can require the availability which is limited by 
the given time or by the given distance [10]. 

A specific number of the centers must be located to achieve 
a certain level of the comfort. Sometimes it is necessary to 
locate no more than a required number of the centers (absence 
of the finance), some other time it is necessary to locate at 
least required number of the centers. Each of these constraints 
changes the uncapacitated location problem to a specific 
problem [16], [17], [18].The problems are sometimes solved 
by commercial IP solver [26], [27]. In other cases, special 
methods are searched for solving the particular problem [20], 
[22], [23], [24]. The computational time of solving the 
location problem together with the additional constraints 
significantly grows. 

In all mentioned distribution problems,the placement of the 
centers is often influenced by some geographical conditions. 
The facility location problems are often solved on large 
networks and it causes that large number of variables must be 
used. The exact method based on the principle of branch and 
bound method, can handle the network containing in order of 
thousands of nodes. The bigger the number of nodes is the 
higher the computational time is. This forces us to find other 
approximate methods for solving the location tasks in shorter 
time [5]. When one of these methods (radial method) was 
tested to solve p-median problem [8], [9], the analysis of the 
results showed some anomalies - the gap of theobjective 
values between the optimal solution and the solution obtained 
by this method grew into 50% and the time consumption grew 
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into some hours. On the contrary, no anomalies were found, 
when solving problems on the real road network of Slovak 
Republic. During experiments, it was found that distribution 
of distance values may considerable influence the 
effectiveness of the solving process. The following hypothesis 
was formulated: The anomalies mentioned above relate to the 
frequency of the lengths in distance matrix.  

In this contribution, we try to answer two questions: 
a) Whether the atypical distribution of lengths in the 

distance matrix influences the exact location problem solving 
method based on the principle of branch and bound.  

b) How the deformation of the real network influences the 
computational time Procedure for Paper Submission 

II. P-MEDIAN PROBLEM 

Recently we looked at the deployment of emergency 
medical service centers. This problem belongs to the tasks 
with a limited number of center locations so-called the p-
median problem. Therefore we try to locate no more than p 
centers so as to get the best value of the objective function. 
The criterion of "best" can be understood as the best average 
time of service availability, minimum total time for service 
availability of the most disadvantaged customer, etc.  

For the purpose of this paper, we solve the p-median 
problem using networks, which are specified by the distance 
matrix. The distance matrices mutually differ in distribution of 
lengths. As the criterion for optimization we understand the 
sum of the distances between customers and their nearest 
located service centers. 

We can use a commercial IP-solver for solving tasks of 
smaller size (in order of hundreds of nodes). This solver, 
known as Xpress, is based on branch and bounds principle [4]. 
On the same principle it was developed a specific method 
BBDual in our workplace [13]. Its advantage is that it can 
solvetasks of larger size (in order of thousands of nodes) in 
real time. The method BBDual solves the uncapacitated 
location problem and it was modified by Lagrangean 
multiplier to the ability to solve the p-median problem tasks. It 
means that we solve the tasks of the p-median problem by the 
iterative way.  

The p-median problem can be formulated as follows: 
Let I denote the set of the possible center locations and let J 

denote the set of the customers. The customers are situated at 
the dwelling places of a network and the number of 
inhabitants at j∈J is denoted by bj. We assume that each 
inhabitant performs the same number of visits at his/her 
service center. Let dij denote the distance between the center 
location i∈I and the customer’s location j∈J. The segment 
between i and j is evaluated by the total traveled distance 
cij=bjdij for each possible center location i∈I and for each 
dwelling place j∈J. Our task is to locate limited number p of 
service centers to some nodes from the set I to minimize the 
sum of traveled kilometers. The decision on locating or not 
locating a service center i at a place i∈I is modeled by a 
variable yi, which takes the value of 1, if the center is located 
at place i and it takes the value of 0 otherwise. The decision on 

allocation of the customer from node j to the center at the 
place i is modeled by a variable zij. It takes the value of 1 if the 
customer j will be served from the center i and takes the value 
of 0 otherwise.The model has the following form: 

 
 (1) 

 (2) 
 (3)  

 (4) 
 (5) 

 (6) 
 

The coefficients in the model have the following meanings: 
I  … the set of possible facility locations 
J  … the set of customers (dwelling places) 
cij … value of the edge between nodes i and j 
p …  required number of facilities (centers). 

There was also designed another way, based on the 
covering principle, to solve large tasks of the p-median 
problem. A simplified description of the model [14], [15] 
follows: 

The approximate approach is based on a relaxation of the 
assignment of a service centre to a customer. In the 
approximate approach, the distance between a customer and 
the nearest facility is approximated unless the facility must be 
assigned. The range <0, max{dij:i∈I, j∈J}> of all possible 
distances is partitioned the into r+1 zones. The zones are 
separated by finite ascending sequence of dividing points D1, 
D2, …, Dr, where 0 = D0<D1 and Dr<Dm =max{dij:i∈I, j∈J}. 
A zone k corresponds with the interval (Dk, Dk+1>, the first 
zone corresponds with the interval (D1, D2> and so on, till the 
r-th zone, which corresponds with interval (Dr, Dm>. A width 
of the k-th interval is denoted by ek for k= 0, …,r.  

In addition to the zero-one variable yi∈{0,1}, which takes 
the value of 1 if a facility should be located at location i, and 
which takes the value of 0 otherwise. An auxiliary zero-one 
variable xjk for k=0, … ,r is introduced. The variable takes the 
value of 1 if the distance of the customer j∈J from the nearest 
located center is greater than Dk and this variable takes the 
value of 0 otherwise. Then the expression e0 xj0 +e1xj1+ e2xj2+ 
e3xj3+…+ erxjr is an upper approximation of dij. If the distance 
dij belongs to the interval (Dk, Dk+1>, it is estimated by upper 
bound Dk+1 with a possible deviation ek. 

Similarly to the covering model, we introduce zero-one 
constant aij

k for each triple <i, j, k>∈I×J×{1, …, r}. The 
constant aij

k is equal to 1 if and only if the distance between 
the customer j and the possible location I is less or equal to Dk, 
otherwise aij

k is equal to 0. Then a covering-type model can be 
formulated as follows: 

 
 (7) 

 (8) 
 (9) 

 (10) 
 (11) 
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In this model, the objective function (7) gives the upper 
bound of the sum of the original distances. The constraints (8) 
ensure that the variables xjk are allowed to take the value of 0, 
if there is at least one center located in radius Dk from the 
customer j. The constraint (9) limits the number of located 
facilitiesby p. 

III. PROPERTIES OF THE COST MATRIX 

Values of dij have a different character for networks with 
dense and equable settlement and different for mountain areas, 
where a larger number of nodes are located away from the 
main settlement. In the first case, the centers can be located so 
that each customer is “near” to one of them, in the second 
case, the presence of large values of dij can be found in the 
distance matrix. Similarity or differences in the character of 
the distance matrix can be described by the frequency of 
occurrence of each value dij in the matrix. Because this 
frequency depends on the cardinality of the sets I and J and 
the distribution of the frequency depends on the scale of 
values of dij, it is possible to compare the task results of the 
networks, which have the same ranges of the distance matrices 
and approximately the same maximum values of dij. For 
different sizes of networks we can standardize the matrix 
values. Differences in the number of assignments (i.e. 
dimension of the matrix) can be solved by registering the 
relative frequencies of occurrences of dijinstead of absolute 
registering. As regards to the nature of the p-median problem 
we assumed that the assignments with the highest valuation 
will not be used in the optimization process. Therefore the 
relative frequencies with the values less than half, 
respectively, two-thirds of the maximum value of dij, are 
interesting for the purpose of research for this paper. For 
illustration three graphs are presented in Fig. 1-3. The first one 
shows the matrix with fast growth of the frequency value, the 
second one with slow growth of the frequency value.  

 

 
Fig.1 Frequencies of values in the distance matrix - 100x1000 

(Slovak Republic) 

 

 
Fig.2 Frequencies of values in the distance matrix - 100x100 

(Beasley’s benchmark) 

 

 
Fig.3 Frequencies of values in the generated distance matrix - 

100x100 

IV. FREQUENCIES OF THE VALUES IN COST MATRIX 
To check the exact method sensitivity, which depends on 

the character of the frequency values in the distance matrix, 
we calculated the p-median problem using the multiple sets of 
networks. These networks varied in size and character of the 
task. One part of networks was picked from the road network 
of the Slovak Republic. First, it was the entire network of the 
Slovak Republic, and then several selections of its subset, e.g. 
networks of 100x1000 matrix type and networks of the 
Slovakia regions as well as a selection of them with 100x100 
matrices. In the smallest networks, the set of the possible 
center locations consisted only of the district towns of the 
region and the set of customers was formed from all the 
municipalities of the region. All these networks have real 
character, although some of them can be considered to be 
someway deformed in view of the criterion used for the 
selection.  

Another set of networks we obtained from internet. They 
were not based on map, but they were created only as the 
distance matrices among the nodes (Beasley’s networks). 
There were just the networks, which showed significant 
differences in the objective values and computational times, 
when exact location-allocation approach and approximate 
covering approach were compared. We chose some Beasley’s 
matrices of sizes 100x100 and 100x1000 and we compared 
their solutions of associated problems with results obtained for 
real networks. For our experiments, we generated also some 
networks with similar sizes. These networks were specified 
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only by distance matrices. 
We calculated the absolute and relative frequencies of 

occurrence of each value in the distance matrix. 
We obtained the following results: An optimal solution was 

found for each studied task and no calculation lasted 
unreasonably long. The characteristic of the frequency values 
in the distance matrix were different in generated networks in 
comparison with Beasley’s networks and the networks which 
were derived from the real road network of the Slovak 
Republic. The occurrence of the frequencies of values less 
than one-third of the maximum frequency value for real 
network ranged from 20% to about 40%, for Beasley’s 
network it was from 33% to 63% and for the generated 
networks ranged from 0% to about 5%. When the occurrences 
of frequencies were less than a half of the maximum 
frequency value, the differences were more significant. In real 
networks, the frequencies of those values varied between 37% 
and 58% of all occurrences, with Beasley’s networks it ranged 
from 71% to 82% and for the generated networks ranged from 
0% to 18%. 

The results of the measured values for some of the networks 
with a matrix of size 100x100 are shown in the table I.  

Columns A and C in the table I denote the frequencies of 
the value less than or equal to 1/3 (A) and 1/2 (C) of the 
maximal frequency and columns B and D represent the 
relative frequencies of the value less than or equal to 1/3 (B) 
and 1/2 (D) of the maximal frequency [%]. 

 

 
 
We solved the p-median problem for all the networks. We 

defined the required number of p so that it always represented 
the same percentage of the number of possible center locations 
in the current network. We followed up the value of objective 
function, and we measured the computation time. 

We used a java implementation of the branch and bound 
method with Erlenkotter’sapproach [5] for the experiments. 
This implementation was named BBDual and it was developed 
at the Department of Transportation Network, University of 
Zilina, Slovakia. One component of this implementation 
(pBBDual) solves the p-median problem so that it solves 
uncapacitated facility location problem with limited number of 
the locations (maximum p). BBDualalways gives optimal 
solution for the uncapacitated location problem. It may not 
always be so, when the p-median problem is solved. 

The algorithm BBDual works iteratively. It solves the 
uncapacitated location problem. If the number of locations is 
higher than p, the penalty would be added. The Lagrangean 
multiplier is introduced for the constraint . The 
number of the iteration depends on several factors. The 
adjustment of the fixed values, the way of ending the iterative 
cycle, the repeated occurrences of values in cost matrix, these 
all influence the computational time. We assume that the 
frequent occurrence of the same values in the matrix 
significantly affects the branching diagram in branch and 
bound method. We verified the calculations using the 
XPRESS solver (professional solver for linear and integer 
programming). 

The table II shows the results of task solutions for p equal to 
one-third and to a half of the cardinality of the possible center 
locations set. The computation time is presented in seconds. 

 

 
 
The computation times were mostly greater when it was 

solved using the program pBBDual in comparison with the 

A B C D

TT-real net 57 40.71% 82 58.57%
ZA-real net 42 27.27% 58 37.66%
BB-real net 73 42.20% 88 50.87%
B1-Beasley 200 59.70% 241 71.94%
B2-Beasley 198 63.46% 227 72.76%

Gen1 0 0.00% 0 0.00%
Gen2 0 0.00% 0 0.00%
Gen3 0 0.00% 0 0.00%
Gen4 0 0.00% 13 9.42%
Gen5 0 0.00% 11 7.97%
Gen6 0 0.00% 14 10.29%
Gen7 5 3.33% 28 18.67%
Gen8 6 3.95% 25 16.45%
Gen9 8 5.26% 27 17.76%

Task size 
100x100

freq≤ (max freq) /3 freq≤ (max freq )/2

Table I    Occurrences of the frequencies

TT-real net 33 0.22 0.73 50 0.11 0.72
ZA-real net 31 0.10 0.62 48 0.08 0.62
BB-real net 33 0.07 0.73 45 0.08 0.87
B1-Beasley 33 0.08 0.64 50 0.07 0.64
B2-Beasley 33 0.08 0.06 50 0.09 0.62

Gen1 31 89.74 0.78 50 90.12 0.71
Gen2 32 52.20 0.78 41 51.72 0.71
Gen3 32 76.98 1.5 49 77.03 0.73
Gen4 28 153.46 0.77 40 153.46 0.71
Gen5 30 68.73 0.74 46 68.90 0.69
Gen6 31 287.58 0.76 50 285.51 0.71
Gen7 33 197.82 0.77 45 197.83 0.71
Gen8 32 154.13 1.1 42 153.77 0.70
Gen9 29 186.63 1.5 47 186.50 0.72

Task size 
100x100

Table II   Computation times

p≤ (number of 
candidates)/3 = 33

p≤ (number of 
candidates)/2 = 50
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computational times necessity for the professional program 
XPRESS. The calculation of the tasks with real and Beasley’s 
networks lasted up to one second for pBBDual and for 
XPRESS as well. The calculation times of the tasks with 
generated networks varied from 90 seconds to 300 seconds 
when program pBBDual was used for solving, and it lasted up 
to 1 second in case of program XPRESS. But it is important 
that the time consumption of all the tested tasks lasted only 
tens of seconds. 

Solution of the p-median problem using exact methods 
based on the principle of a branch and bound method in our 
examples did not confirm time consumption differences 
depending on the distribution of frequency values in the 
distance matrix. We assumed that the rapidity of solution of 
the pBBDual method was positively influenced by the special 
structure of coefficients cij, which acquired different values 
despite of the fact that a lot of them were repeated. This causes 
the variety of the objective function values in the branches and 
hence, the faster progress of the optimization process. 

V. AN INFLUENCE OF THE DEFORMATION OF THE COST MATRIX ON P-MEDIAN 

Based on the result of the table II we state, that there are no 
differences in computational time, when the algorithm Xpress 
solved the tasks with networks of different types. Algorithm 
pBBDual"worked" well on real networks and worse on 
artificially obtained ones. The question arises, what causes the 
difference in time consumption, when algorithm pBBDual is 
used for solving the tasks of the p-median problem.  

It can be the difference in occurrence of the value 
frequencies between real cost matrix and generated cost 
matrix.The difficulty can follow from the fact, that the 
networks which are given by generated matrices do not have 
the properties of the real networks (e.g. they do not 
meettheEuclidean metric). 

We propose the following experiment to verify the 
hypothesis that the deformation of the real network does not 
significantly affect the properties that influence the 
computation of the p-median problem. We round up the 
distances among the nodes of real network so that theywill be 
divisible by 5. We obtain another set of task when we round 
up the distances to the values that are divisible by 10. The aim 
of this deformation is to obtain matrices with greater 
occurrence of the same values. These values will occur in the 
distance matrix with greater frequency. We will solve the p-
median problem by algorithm pBBDualfor both the original 
and the deformed data. The request for parameter pwill be the 
same in both cases.  

We are interested in how the computational time of the p-
median problem will change after the deformation of the 
distance matrix.We will monitor the computational time, 
changes in the set of the service center locations and the 
objective value. We will compute the objective value as the 
total availability of service calculated from the real distances 
among the customers and the locations of the service centers. 
We will also use the real distances to calculate the objective 
function of the tasks with deformed data.They will differ 
because of the different sets of the located centers. 

We will evaluate the difference between the availability of 
the service on the real and on the deformed networks.To 
evaluate the differences among locations of the centers before 
and after the deformation of the network we will use the 
Hamming distance. The Hamming distance between two 
vectors of equal length is the number of coefficients in which 
they differ. The length of the vector in our task is equal to the 
number of the candidates for the locations. The vector on the 
i-th position takes the value of 1, when a service center is 
located in the i-thnode; otherwise it takes the value of 0. 

We performed the testing on road networks, which 
correspond to the regions of Slovakia and to the whole 
Slovakia. The networks of the regions contain from 87 to 664 
nodes. Both the set of the candidates and the set of the 
customers consist of all nodes of the particular region. The 
road network of Slovakia contains 2916 nodes and the set of 
the candidates in this case is formed from 79 district capitals. 

We created another group of calculations so that we 
selected some nodes from the networks mentioned above and 
we obtained matrices of sizes 100x100. We solved the p-
median problem for two value of p for each network. The 
value of p corresponds to one third of the candidates in one 
case and to one half in the second one. 

The table III shows the comparison of the computation time 
of the real networks and of the deformed ones, which are 
specified by the matrices of sizes 100x100. In all cases, p 
takes the value of 33 except the Bratislava region (BA), where 
p is equal to 29 because the total number of nodes of this 
region is only 87. 

 

 
 
The demands of the customer also influence the solution of 

the task. The term “customer” can represent a node of the 
network – dwelling place (town, village). In another case, we 
consider the customer aseach resident of the village. We use 
both approaches in our research. When the cost matrix 
contains of the distances among the nodes of network, we talk 
about the distance matrix (cij=dij). We solve the problem with 
demands, when each customer is an inhabitant. In this case we 
talk about the cost matrix. We calculate the elements cij of the 
cost matrix as product of the shortest distance between the 
nodes i∈Iand j∈J and the number of inhabitants bj in the node 
j∈J(cij=bj.dij).The real number of inhabitants was divided by 
100 for each node j∈J. We always apply the deformation of 

Table III   Time consumption of the algorithm BBDual in seconds [s]

real def=5 def=10 real def=5 def=10
BA 29 0.040 0.023 0.054 0.009 0.005 0.004
BB 33 0.051 0.022 0.046 0.009 0.007 0.007
KE 33 0.040 0.043 0.023 0.007 0.006 0.005
NR 33 0.060 0.038 0.027 0.007 0.006 0.007
PO 33 0.044 0.026 0.031 0.012 0.006 0.006
TN 33 0.052 0.031 0.146 0.012 0.011 0.006
TT 33 0.154 0.039 0.111 0.011 0.007 0.005
ZA 33 0.077 0.037 0.018 0.006 0.005 0.005

Net p without demands with demands
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the network (the rounding of the values) to the distances dij. 
The table IV shows the objective values for the same set of 

networks as it was used in the table III (matrices of sizes 
100x100, p=33, BA with matrix 87x87 and p=29). 

 

 
 
There are results for p=50 in the table V. The set of the 

networks was the same as in the table III. Bratislava region 
(BA) has only 87 nodes, therefore the p-median problem was 
solved on the matrix of the size 87x87 and p=43. 

 

 
 
The objective values for the same set of networks are 

displayed in the table VI. 
 

 
 

Fig. 4 shows the differences of the objective function in 
percent for both deformations (the distances are rounded up to 

the values that are divisible by 5 and by 100) and for networks 
with the demands of the customers.Parameter p takes the value 
of one half of the candidates for the location.  

 

 
Fig.4 Objective values differences in [%] 

We evaluated the Hamming distances from the vectors of 
the locations between problems solved on real network and 
problems solved on networks after the deformation. The 
relative frequenciesof the deviationsfor the same networks as 
it was presented in table VI (with demands) and Fig. 4are 
shown on Fig. 5. 

 

 
Fig.5 Hemming distances 

The next set of the network that was used in our 
experiments contains the road networks of the regions of 
Slovakia and the road network of the whole Slovak republic. 
The numbers of the nodes of these networks are higher. The 
numbers of the candidates are also higher except the network 
of whole Slovakia and they differ from each other. Therefore, 
we always chose the parameter pin the same ratio to the 
number of the candidates for the location. This is why the 
values of p are not the same in the next tasks. 

The comparison of the computational time is shown in the 
table VII. The networks of the regions are given by the real 

Table IV   Objective values

real def=5 def=10 real def=5 def=10
BA 29 227 274 313 4504 4581 4968
BB 33 472 485 593 9051 9148 9220
KE 33 365 402 425 9498 10007 10600
NR 33 420 505 568 9543 9734 10220
PO 33 393 427 574 9103 9147 9165
TN 33 320 355 451 6671 7610 7561
TT 33 360 378 523 7334 7602 7862
ZA 33 422 428 441 10363 10541 10901

Net p without demands with demands

Table V   Time consumption of the algorithm BBDual in seconds [s]

real def=5 def=10 real def=5 def=10
BA 43 0.050 0.031 0.064 0.019 0.015 0.015
BB 50 0.064 0.026 0.041 0.008 0.007 0.003
KE 50 0.041 0.042 0.034 0.006 0.007 0.005
NR 50 0.058 0.035 0.020 0.010 0.007 0.008
PO 50 0.044 0.025 0.022 0.007 0.007 0.009
TN 50 0.052 0.030 0.086 0.011 0.008 0.006
TT 50 0.053 0.034 0.074 0.010 0.008 0.008
ZA 50 0.074 0.033 0.022 0.007 0.003 0.006

Net p without demands with demands

Table VI   Objective values

real def=5 def=10 real def=5 def=10
BA 43 149 196 313 2045 2226 2688
BB 50 315 302 383 4476 4520 4912
KE 50 235 295 386 4960 5125 5422
NR 50 293 284 353 5120 5187 5877
PO 50 241 275 339 4574 4752 5185
TN 50 215 284 358 3479 3570 3884
TT 50 242 336 375 4017 4076 5059
ZA 50 246 264 303 5500 5696 6489

p without demands with demands
Net
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matrices and the deformed matrices (the distances are rounded 
up to the values that are divisible by 5).Parameter p is equal to 
the one third of the candidates for the location. 

 

 
 
The computation times of the p-median problem differ from 

each other in this set of tasks for the particular regions. The 
computation of some tasks on real (not deformed) networks 
without demands of the customers took more than 10 minutes. 
When the networks were deformed and no demands of the 
customers were added, the computation in some cases did not 
end even after 12 hours and the computation was interrupted 
(blank cells in the table VII). 

The computational times have no significant differences, 
when the distance matrices of the particular problems were 
multiplied by the demands of the customers (cij=bj.dij for i∈I 
andj∈J).Therefore, we will introduce only the results of the 
problems, where cost matrices (cij=bj.dij for i∈I andj∈J) were 
used in our experiment instead of distance matrices (cij=dij for 
i∈I andj∈J). 

The table VIII shows the objective values for the networks 
of the regions of Slovakia and of whole Slovakia, where cost 
matrices are used and where parameter p is equal to the one 
third of the candidates for the locations.  

 

 
 
Because of individual regions are of unequal size, we 

calculated the relative differences between the values after 
deformation of the matrix compared to the values of the real 
matrix. Fig. 6 shows the differences of the objective values in 
percent for both deformations (the distances are rounded up to 
the values that are divisible by 5 and by 100). 

 

 
Fig.6 Objective values differences in [%] 

We evaluated the Hamming distances from the vectors of 
the locations between problems solved on real network and 
problems solved on networks after the deformation. The 
relative frequenciesof the deviationsfor the same networks as 
it was presented in table VII and Fig. 6are shown on Fig. 7. 

 

 
Fig.7 Hamming distances 

VI. CONCLUSION 
We study two problems in this paper. At first, it is the 

influence of the frequency of the values in a distance matrix 
on the computation time of the solving the p-median problem 
by the specific algorithm.  

Although they were some deflections of the frequency 
valuesin the networks with real matrices, we noticed no 
differences of the computation times. The computation times 
several times grew when the algorithm pBBDual solved the p-
median problem on the generated matrices. It was confirmed 

Table VII   Computation time of the algorithm BBDual in seconds [s]

real def=5 real def=5 def=10

BA 87 29 0.04 0.02 0.01 0.01 0.00
BB 515 171 48.50 165.49 1.40 0.72 0.50
KE 460 153 812.58 0.96 0.71 0.28
NR 350 116 76.94 0.76 0.79 0.29
PO 640 221 1075.09 7.76 3.94 1.29
TN 276 92 0.92 0.95 0.16 0.11 0.05
TT 249 83 5.61 37.60 0.13 0.06 0.08
ZA 315 105 3.43 7.89 0.29 0.11 0.09
SR 79 26 7.53 4.15 0.88 0.74 0.64

Net p =m /3
m 

number of 
candidates

without demands with demands

Table VIII    Objective values

real def=5 def=10

BA 87 29 4504 4581 4968
BB 515 171 4849 5188 5615
KE 460 153 5675 6110 7491
NR 350 116 6768 7320 8244
PO 640 221 5555 6002 7864
TN 276 92 4113 4648 4859
TT 249 83 5581 5845 6734
ZA 315 105 5674 6222 6969
SR 79 26 877874 877874 885356

Net p =m /3
m 

number of 
candidates

Onjective
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that the algorithm is not suitable for solving the tasks on 
artificial networks for its specific properties. 

The second problem that we study in this paperis the 
influence of the real network deformation on both the 
computation time and final solution of the task solved by 
specific algorithm. 

The results of the task solved on deformed networks are not 
uniform. The computation time of the tasks with the sets of 
candidates of numbers from 87 to 100 were not changed after 
the deformation. Some differences were only in time between 
the tasks with demands and tasks without demands of the 
customers (computation times grew up about 10 times). The 
computation times took some milliseconds that are why the 
differences are negligible. 

There were differences in the set of tasks with the matrices 
of higher sizes. The computation times grew up to 2-15 
minutes for three tested regions whenwe tested the networks 
with real distance matrices without the demands of the 
customers. In these three cases, the deformations were 
strongly manifested. We knew no results even after 12 hours, 
so we stopped the solving process. On the contrary, when we 
solved the tasks of higher sizes and with demands of the 
customers, no problems with the solving process occurred and 
no significant differences arose. 

The real distance matrices contained approximately 500 
different values. The number of different values was reduced 
to less than 100 after the first deformation (the distances were 
rounded up to the values that are divisible by 5) and itwas 
reduced to less than 50 after the second one (the distances 
were rounded up to the values that are divisible by 10). The 
tested matrices contained again a high number of different 
values after multiplying the distance matrices by the demands 
of the customers and the deformations of the networks were 
negated. Nevertheless, differences in the objective values 
arose in all tested tasks. The higherthe differences of the 
computation time were the higher the differences of the 
objective valueswere.Differences of the objective functions 
grew with the growth of the deformation. 

The results of our experiment show that even a small 
deformation of the real network has an impact on the changes 
of the resultant service centers locations. The differences go 
up with the enlarging of the number of the candidates. 
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